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Abstract. Invariant and parameter-invariant solutions of the classical Euclidean SU(2) 
Yang-Mills equation are studied. It is shown that many interesting solutions of the 
Yang-Mills equation are parameter invariant and that thereby the solutions with finite 
action value (instantons) correspond to the parameter-invariant solutions with maximal 
symmetry. Some new classes of exact solutions are also obtained. 

1. Introduction 

In the present paper, the solution of the Yang-Mills equation is considered from the 
group point of view, i.e. its invariant solutions (with respect to some transformation 
group) are discussed. 

As is known (Mack and Salam 1969), the Yang-Mills equation is conformally 
invariant, i.e. besides the gauge group it admits the conformal group of transformations, 
whose generators are four translations, six space rotations, dilatation and four special 
conformal transformations. If, to eliminate the gauge degrees of freedom, we fix the 
gauge and consider the symmetry of the system of the initial equation with the gauge 
condition, then the conformal group turns out to be broken up into one of its subgroups. 
Knowing this symmetry group, the invariant solutions (Ovsyannikov 1962, 1978) of 
the Yang-Mills equation in the chosen gauge can be found. 

However, the possibility of using the invariant solution concept is in a number of 
cases rather restricted. For example, if we look for the solutions of the Yang-Mills 
equation 

9pG;y = 0 G;” = - A;,” + g E a d L A ‘ ,  

which are invariant under the group of translations with generators X ,  = 
a/ax, ( a  = 1, .  . . ,4 )  in the form 

ccl(x, A )  = 0 

Xmccl(X, A )  = 0 

then the condition of invariance 

means clearly that the sought solution has only a trivial form: A; = constant. In terms 
of the theory of the group properties of differential equations (Ovsyannikov 1962, 
1978) such a situation is quite natural. If 

(a = 1, .  . . , r i =  1,.  . . , n k =  1, .  . . , m) 
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1126 V Rosenhaus 

are the basis operators of the Lie algebra of the r-parameter group H ( n  and m are 
numbers of variables and functions respectively), then the equations for the invariant 
N solution are 

@ k ( I l , * . . , I , ) = o  k =  1 , .  . . , m t = N - R = n + m - R  (1) 

where 

R =rank !5b, vtli 
and I ,  are invariants; 

X,I,  = 0 5- = 1, . . . , t .  

Thus, if R = n, then t = m and equations (1) take the form 

I ,  = C, =constant. 

( In  the simple example considered R = n = 4 and A t  = constant.) 
Therefore it might be worthwhile to somewhat modify the invariant solution concept 

and to introduce parameter-invariant solutions which depend not only on the initial 
variables (x,) but also on the parameters ( a , ) ,  Thereby to each group generator X ,  
corresponds its parameter a,. 

The invariant solution does not change its form under the transformation of the 
group. The parameter-invariant solution transforms to a new solution which differs 
from the initial one by the value of the parameter and reduces to the initial solution 
by the parameter redefinition. Thus the parameter-invariant solution may be regarded 
as an invariant one, considering herewith that on the transformation X ,  of the group 
H the corresponding parameter changes as well. For an Abelian group H (for instance, 
for each one-parameter group) the transformation rule of a, may be chosen in the 
form a/aa, (in this case, a, is the canonical parameter). We shall choose the transforma- 
tion rule of a, on the basis of that of x, (for example, if a, is the vector, then to = tX 

In this manner, by introducing a set of parameters the number of independent 
variables of the manifold can be increased from n to n + r ,  thereby the number of 
independent invariants I ,  grows as well: t + t + r = n + m - R + I and in the case of 
R = n, t = rn + r > m, system (1) will possess non-trivial solutions. 

The process of increasing the number of variables may be continued by assigning 
several parameters to each generator of the symmetry group, which leads to the further 
growth of the number of independent invariants in expression (1). 

The present paper is devoted to the discussion of the parameter-invariant solutions 
of the classical Yang-Mills equation in the Lorentz gauge. In Q 2, the invariant and 
parameter-invariant solutions of the Yang-Mills equation are found for the case when 
each generator of the symmetry group corresponds to not more than one parameter. 
Section 3 deals with some parameter-invariant solutions in the case when, to each 
generator of the group correspond a number of parameters (or, more exactly, when 
each considered subgroup of the symmetry group corresponds to several parameters 
with some transformational properties (scalars, vectors, tensors)). 

( x +  a ) ) .  

2. One-parameter-invariant solutions 

Let us study the solutions of the classical Euclidean SU(2) Yang-Mills equation in 
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the Lorentz gauge 

a,G;, + gE,h,A; GLY = 0 

a,A; = 0 ( 2 )  

@, v = 1, . . . ,4 a, b, c = 1, 2 ,  3 .  

System ( 2 )  admits the group H of point transformations (Lie point symmetry group), 
the infinitesimal operators of which (Rosenhaus and Kiiranen 1982) are 

(3) 

Let us look for the parameter-invariant solutions of system ( 2 )  (with respect to certain 
subgroups of the group H) in the explicit form 

A ; - f ; ( x ,  b,)=O (4) 

where b, are parameters. 
For the translational subgroup { X,} with generators 

the {X,}-invariant solutions (as noted before) are only 
h b A; = c; = constant c; c, = c: c, 

corresponding to GZY = 0 (and to the zero action value: S = 0). 
Excluding from consideration these trivial vacuum solutions, let us proceed to the 

{X,}-parameter-invariant solutions. Introducing the translational parameters c,, we 
construct new generators 

a a  x, + x: = - + - 
ax, ac, 

(in the given case, c, is the canonical parameter). The form of the parameter-invariant 
solution is determined from 

X&(A; - f ; ( x ,  6)) = O  

and {X:}-invariant ({X,}-parameter-invariant) solution takes the well known form 

A ; - ~ ; ( x - c ,  b ) = 0 .  ( 5 )  

Now we shall consider in succession the invariance (the parametric invariance) 
under the other subgroups of the group H with generators (3) .  Respectively, in all 
further expressions x, means x, - ccx. 
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2.1. The subgroup of rotations in the coordinate andfunctional spaces with generators X,, 

It can be shown easily that the invariance condition 
x,p(A; -f;)lA;=.f;l= 0 

for system (2) cannot be satisfied, i.e. system (2) has no {X,”}-invariant solutions. 
Let us find parameter-invariant solutions. 
(i) Let the parameter corresponding to the subgroup {XmP} be the vector (with 

respect to the coordinate space) RZ, i.e. 

The condition of parametric invariance 

X&p(A; -r,) = 0 ( 6 )  

A; = RZx,x,g(x2) (7) 

A; = R ~ ( x ’ ) .  (7’) 

defines the possible form of the solution 

or 

However, expression (7)  determines the Abelian field: [A,, A,]  = 0, and expression 
(7’) contradicts the gauge condition of system (2) .  

Thus, for the case (i)  there is no parameter-invariant solution in the Lorentz gauge. 
(ii) Consider now the parameter-invariant solution with the tensor parameter T:@: 

Now from the condition of parametric invariance ( 6 )  it follows that 

A; = T Z Y ~ f ( ~ 2 ) .  (8) 

TIP f +2x,x,T; , f ’= 0. (9) 

Substituting expression (8) into the second equation of system (2), we obtain 

Let us expand TEu on the symmetric and antisymmetric components (with respect to 
p and v) 

T i y  = S i u  + A;”. 

If SEv # 0, then equation (9) gives 

ql, - 8,” f =  C / ( X ’ ) ’ .  

Excluding from consideration the Abelian (vacuum) configuration we have 
T” = - T ”  

,U * 

The substitution of (8) into the Yang-Mills equation (2) results in the specification of 
the form of the tensor T I Y .  As is well known, 

T” ,U = ?),U ” 

( ~ $ n = i j $ n = & a m n ,  a;,=-ij;4= 8 a p ,  ~ “ y = - ~ ; v )  r I z w = - i j : v ) .  

(T;”  = 7;”) 
where r ] ; y ( i j ; y )  are ’t Hooft symbols (’t Hooft 1976) 
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Thus, the parameter-invariant {X,,} solutions with the tensor parameter TZU have the 
form 

A t  = . I E ~ x , ~ ( x ' ) .  (10) 

In a general case, parameter-invariant solutions with tensor parameters of an arbitrary 
rank are also possible. 

(iii) 

Representing TtnP as a sum of symmetric and antisymmetric (with respect to the 
last two indices) parts and taking account of the gauge condition (2) brings the given 
solution to (7'). 

A; = T t a P  x,xpf( x'). 

Analogously, the solution of the form 

leads to (8) .  The absence of new parameter-invariant solutions in more complicated 
cases is also obvious. 

2.2. The subgroup of rotations in the isospace {x&) 
The solutions of form (10) are, evidently, {xab} parameter invariant ifthe corresponding 
parameter is the same, i.e. 77:") 

2.3. The dilatation subgroup {XI 

Let us first find the {X}-invariant solutions in the form (10): 

X(AZ - T J ~ ~ X ~ ~ ( X * ) )  = 0 

from which the form of the dilatation-invariant solution 

A t  = k ~ ~ , x , / x 2  k =constant. 

Inserting ( 1  1 )  into the Yang-Mills equation (2),  we obtain 

k = l / g .  

The corresponding solution is the meron (De Alfaro er a1 1976) (meron-meron 

Consider now the {X}-parameter-invariant solutions: 
pair with singularities at 1x1 = 0 and 1x1 = m). 

a a a 
ax, aAz ap 

x ' x ' = x, - - AZ-+p- 

(where p is the parameter). 
Using the invariance condition, we get 
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(the coefficient 2/g is separated for convenience). Substituting (12) into (2), we obtain 

qP= cpZ(1- cpy+ c ,  

@=--=z-- acp acp 
a t  az 

t = I n z  z = x 2 / p 2  c1 = constant 

whereas the action takes the form 

S=a d4xG;, C;,=(24r2/g2) dt[d2+cp2(1 -cp)* ] .  1 1 
In the simplest case, c1 =0, we obtain two solutions of equation (13): 

cp = z / (  1 + 2 )  cp = 1/( 1 + 2) 
and two Yang-Mills configurations, respectively: 

2 

Expressions (14) describe the instanton (Belavin et a1 1975) (in the regular gauge) and 
the anti-instanton (in the singular gauge), respectively. 

By introducing cp = U +: the solutions for a more general case are also easily 
obtained: 

O s k s l  -- , k S c , < O  

U = [ k2/2( 1 + k2)]’/* sn[t/[2( 1 + k2)]’/2, k] 

where sn[u, k] is the Jacobi elliptic sine of the parameter k. Formulae (15) have been 
obtained by Baseyan and Matinyan (1980). 

There also exist the singular elliptic solutions of (13) (Rosenhaus 1986). 

C I S  -1 16 

U =[(1- k2)/2(1 -2k2)]”2/cn[t/[2(1 -2k2)]”2, k] 

c1 = - & ( k = 0) 

- & < c l s o  O < k s l  

U = ([2( 1 + k2)]1’2 sn[t/[2(1+ k2)11’2, kI)-’. 

c 1 2 o  & / 2 < k s l  

U = (1 - cn[ t /(2k2 - I)’’’, k])/((2kz - 1)’I2 sn[ t/(2k2 - 1)’I2, k]). 

0 s k < 

( 1 6 ~ )  
U = (a cos( 

(16b) 

( 1 6 ~ )  

Note that for each solution (15) and (16) there also exists the corresponding solution 
with U + -u(cp + 1 - cp) which has the same action value S and the opposite sign of 
topological charge 

Q=& J G;,C;,dx4=6 J dtdcp(1-9). 

3. Multiparameter-invariant solutions 

Consider now the case when more than one parameter corresponds to different 
subgroups of the symmetry group. Let the number of translational parameters be equal 
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to two: a, b 
a a a  

ax, aa, ab, 
x;=-+-+--. 

Thus, now we have two parametric invariants 

y = x - a  z = x - ~ .  (17) 

As above, we shall consider the invariance (the parametric invariance) in succession 
under different subgroups of symmetry group (3), whereby we again assume that to 
the generators of the rotation group X,,  corresponds the only tensor parameter 
Tzu( 7 z Y ) ,  so that the sought solution will be 

(18) A; = T;”{Y,dY’, YZ, z2)+ ZV*(Y2, YZ, z’)l (YZ = YmZ,). 

3.1. 

First, we demand the invariance of (18) under the dilatation subgroup with the operator 

(19)  
a a a a a 

u a ~ a  “aA:  ayu az, aA: 
X=x - - A “ -  + ya -+ Z, - - A: -. 

The invariance condition is fulfilled if 

We shall, however, look for the solution of the Yang-Mills equation in a less general 
form (Corrigan and Fairlie 1977) 

1 
3, In @(y2, YZ, z’) (21)  A“ =- -  

f i g  
where only one vector aldx, is introduced instead of two: y, and z,. The dilatational 
invariance of (21) means that the function @ must be the homogeneous function of 
its arguments, i.e. 

@ = (YZff (5, $) k = constant. 

It is known (Corrigan and Fairlie 1977) that (21) is the solution of the Yang-Mills 
equation if 0 satisfies the equation 

a,a,@ = -c@’ c = constant. (23) 
Substituting (22) into (23), it may be concluded that the only case to discuss is k = -1  
and for f we have 

2 f + 4 ( o r f , + ~ f p ) + [ C Y ~ f ~ + 2 ( C Y p - 2 1 f ~ + ~ ~ f p ~ 1 = - ~ f ~  
(24) 

Let us restrict ourselves to the solutions of equation (24)  only in the simplest case 
CY = y2/yz p = z’/ yz C = c / ( a  - b)’. 
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If B afa + PfP +A then the first equation of system (25) is 

a B , + P B p = - 2 B  

and 

B = c ~ - ~ + ( a / P ) .  

Finding f from here and inserting it into the second equation of ( 2 5 ) ,  we get 

f =  ( l / a )cp(a /P )  - a- ‘+ (a /P ) .  (26) 

(i)  c = O .  

cp =T+T+ k1 c2 a+ yz k2 7 yz (c~, k, =constant). 
Y Z  Y Z 

Choosing c2 = k2 = 0, c, = A:, k ,  = A i  we obtain the one-instanton solution in the form 
by Jackiw er a1 (1977) although such a choice actually means the introducing of the 
dilatational parameters and will be discussed below. 

(ii) c # 0. In this case, + = 0 and cp satisfies 

( P 3  cp”+-=O 
x3 

- Ly y2 (x-a)’  
x=-=--- P z’-(x-b)’‘ c p = c p ( f )  

The corresponding 0 takes the form 

d = constant 

which coincides with the form of the ansatz by Cervero et a1 (1977). The obvious 
solution of (27): 

cp =fJn 
correspond to 

0 =fd(y2Z’)-”’. (29) 
Equation (29) is the meron-antimeron pair with singularities in two arbitrary points 
x = a and x = b (De Alfaro er a1 1976). 

To solve (27) like Cervero et a1 (1977) we introduce 

7 = + (30) cp = 22‘12 U(?) = 1 2 1n(y2/z2). 

Then 

0- ( ~ ’ z ~ ) - ’ ’ ~ u [ $  1n(y2/z2)] (30’) 

where U satisfies the equation 

U”- U +  u3 = 0 aut = 2u2+ ~y cz - 1  (31) 
( E  = -1  corresponds to solution (29)). The solutions of (3 1 )  are again expressed through 
the Jacobi elliptic functions. 

E 3 0  a / 2 < k s l  

U = k( k’-i)”’cn[(J + cl)/2(2k2 - l)”’, k] ( c1 = constant). (32) 
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Note that expression (33) is consistent with that by Cervero et a1 (1977) only if by 
k ( k ’ )  in expression (8) of the cited paper one understands k 2  ( k ”  = 1 - k 2 ) ,  where k 
is the parameter of the elliptic functions. 

3.2. 

Let us move on to parameter-invariant solutions under a dilatation subgroup. Let p 
be the only parameter of this group, 

Restricting ourselves again to the form of solution ( 2 1 ) ,  instead of (18) we have 

0 = ( P 2 ) k f ( Y 2 /  P 2 ,  YZ/ P 2 ,  z 2 /  P 2 )  k = constant. (34) 

Note the essential difference from the preceding case: the arguments of the function 
f a r e  not independent any more: 

( y - z ) 2  l 2  -=-- 
p 2  - s 

P 2  

where S is a scalar parameter independent of dilatation. Therefore 

-- 2’,” - ff + p - S 
P 

P 2  P 2  
2 2  

f =  c, + c2 ?+ kl T +  k2 7. 
P Y Z 

The choice cl = c2 = 0 gives an anti-instanton solution in the form by Jackiw et a1 (1977) 
and the choice c2 = 0, c1 = k ,  = k2 = 1 leads to 

P 2  P 2  f =  1+,+,. 
Y Z  

(39) 
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Equation (39) is the two-anti-instanton solution in the singular gauge (in the form by 
’t Hooft-Witten (Witten 1977), with the same sizes of instantons). 

The case c # 0 leads again to solution (33). 
In a more general case of the dependence on two dilatational parameters and also 

in the general case of the dependence on n translation and m dilatational parameters 
( m  d n ) ,  the generalisations are evident: 

y ,  = x - ai. P f  f = l +  7 
i = l  ,Vi 

It is known that for each n-anti-instanton solution of form (21) there exists the 
corresponding n-instanton solution, when changing 77;” + q;,,. 

Let us now discuss some invariant solutions in a form different from (8). We 
assume that the two parameters correspond to the rotation subgroup { X m p }  (in a general 
case, the number of parameters may be larger than two). Let these parameters be T ; ,  kfi : 

Then the form of the {X&,}-invariant solution is 

1 

g 
A; = - ~ ; f (  kx, x’ )  

or 

1 
A” =- 7 7 : x , x f i f ( ~ ,  x 2 )  

f i g  

whereby, however, solution (41) defines an Abelian field. 
Substituting (40) into the second equation of (2) we have 

f = j (  kx/ Jk2) T ; k f i  = O  

and into the Yang-Mills equation (2) ,  

(40’) 

(40”) 
f r 2  = c 1 +  lj-4 f’= df/df 2 = k x / @  c, = constant. 

Choosing 1 = 1, we obtain 

c ,=o  

f = f l / f  

c1 < o  a = ( ~ c 1 ~ ) 1 ’ 4  
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Thus the {XOp}-parameter-invariant solution (with parameters v;, k , )  has the form 

with the function f determined by expressions (42). 

4. Concluding remarks 

In the present paper, in finding the exact solutions of the Yang-Mills equation we 
have required invariance (parametric invariance) under all generators of the symmetry 
group and the solutions, invariant under some subgroups of this group, have not been 
considered. We have discussed only the solutions with one certain type of symmetry, 
when to each generator there corresponds one or more parameters with the same 
transformational properties. For instance, we have not studied the solutions of the form 

or other solutions with 'mixed' symmetry (see, for example, Inhadullah Khan 1984). 
We have also restricted ourselves only to the simplest cases of parameter-invariant 
solutions. 

Nevertheless, as was shown above, in the case of a rather complicated physical 
system, the symmetry properties also simplify the finding of the solution required and 
many interesting solutions turn out to be parameter invariant. In that sense the finite 
action solutions (instantons) correspond to parameter-invariant solutions with maximal 
symmetry. 

It should be noted, however, that multi-instanton solutions of the general form 
(Atiyah et a1 1978) have not been considered in the present paper. 
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